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Abstract
Discrete time evolution of one-dimensional maps is embedded in continuous
time by truncating the Taylor series expansion of the time evolution operator
to a finite order N. The fixed points of the ordinary differential equations
thus obtained are unstable whenever N > 4 regardless of the details of the
underlying map, so long as it is continuous and differentiable. Generalization
of the truncated equations with N = 3 and 4 shows dynamical behaviour
characteristic of systems with a riddled parameter space.

PACS numbers: 05.45.Pq, 02.30.Hq

1. Introduction

Time development of systems evolving continuously in time is modelled with differential
equations, whereas difference equations (maps) are used to describe systems that evolve in
discrete time. Here, we try to study the connection, if any, between solutions of discrete maps
and a set of ordinary differential equations that are derived from the map using an ansatz
described below. Basically, we truncate the Taylor series expansion of the time evolution
operator corresponding to the discrete map at a finite order N to get an ordinary differential
equation (ODE) of order N. Contrary to the expectation that the solution of such an ODE
should converge to that of the discrete map (when t = an integer) in the limit N → ∞ we
find surprising results. Our numerical studies of the ODEs thus obtained for a few maps
(logistic map, tent map, etc), using adaptive fourth-order Runge–Kutta method, showed that
the solutions became unbounded in a finite time for all the randomly chosen initial conditions
(that we used) whenever N � 5 and finite. We report the results of our analysis prompted by
this intriguing observation. In particular, we show that the fixed points of all these ODEs with
N � 5 are unstable regardless of the details of the underlying map, so long as it is continuous
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and differentiable. Results of our ongoing study of the nature of solutions of these ODEs for
arbitrary initial conditions will be reported elsewhere.

The nature of the solutions for truncation at N � 4 do depend on the details of the map.
The ODEs with N = 1 and 2 show regular behaviour. The third- and fourth-order ODEs
obtained for the logistic map show period doubling bifurcations leading to chaos, reverse
bifurcations, instability in some regions etc. Unlike the logistic map, these equations show
sudden switching from regular to chaos or to unbounded behaviour by a slight variation
in the parameter, which is an indication of structural instability that was discussed in the
context of systems with a riddled parameter space (Cazelles 2001, Kapitaniak et al 2000,
Kim and Lim 2001, Krawiecki and Matyjaskiewicz 2001, Lai and Winslow 1994, Lai 2000,
Lai and Andrade 2001, Medvinsky et al 2001, Maistrenko et al 1999, Woltering and Markus
2000, Yang 2000, 2001).

2. Ordinary differential equations corresponding to discrete maps

Consider a general one-dimensional map

xn+1 = f (xn). (1)

This discrete time evolution can be embedded in continuous time t by considering the equation

T̂ x(t) = f (x(t)) (2)

where T̂ is the unit time evolution operator

T̂ = exp

(
d

dt

)
. (3)

We consider the nature of solutions of the sequence of ordinary differential equations

N∑
j=0

(
1

j !

)(
dj

dt j

)
x(t) = f (x(t)) (4)

obtained by truncating the formal power series expansion of the time evolution operator T̂ to
order N.

3. Nature of solutions for N � 5

As mentioned in the introduction, one of the objectives of this paper is to examine the nature of
solutions of the ordinary differential equations (4) for various values of N. For any map f (x)

that is continuous and differentiable, we prove that the fixed points of the ODEs represented
by equation (4) are unbounded if N � 5.

For this purpose, we now consider the solutions of equation (4) with the initial condition
x(0) = x� + ε, where x� is a fixed point (f (x�) = x�) of the map and ε is an infinitesimal.

Writing x(t) = x� + δx(t) so that δx(0) = ε, and using the relations

dj

dt j
x(t) = dj

dt j
(x� + δx(t)) = dj

dt j
δx(t), for j � 1,

and

x(t) − f (x(t)) = x� − f (x�) +

(
1 − d

dx
f (x)|x=x�

)
δx(t) + O(δx(t)2),
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one gets
N∑

j=1

(
1

j !

)(
dj

dt j

)
δx(t) + α(x�)δx(t) = 0 (5)

to first order in δx(t). In equation (5), α(x�) = 1 − d
dx

f (x)|x=x�
, and we have also used the

fact that x� − f (x�) = 0. Since the above equation is linear we look for a solution of the form

δx(t) = c exp(µt) (6)

to get
N∑

j=1

(
1

j !

)
µj + α(x�) = 0. (7)

We now show that there will exist at least one µ with positive real part irrespective of the value
of α(x�), if N � 5. This would imply that the fixed points of equation (4) are unstable for any
finite N � 5 regardless of the specific functional form of f (x).

Now, equation (7) is of the form

a0µ
N + a1µ

N−1 + · · · + aN−1µ + aN = 0, (8)

with aj = 1
(N−j)! for 0 � j � (N − 1) and aN = α(x�). Nature of zeros of equation (8) can

be examined by using the well-known Routh–Hurwitz theorem (Korn and Korn 1961).
Define

U0 = a0, U1 = a1, U2 =
∣∣∣∣a1 a0

a3 a2

∣∣∣∣ ,

U3 =
∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣ , U4 =

∣∣∣∣∣∣∣∣

a1 a0 0 0
a3 a2 a1 a0

a5 a4 a3 a2

a7 a6 a5 a4

∣∣∣∣∣∣∣∣
, etc.

(9)

Then Routh–Hurwitz theorem states that the number of roots of equation (8) with positive real
parts is equal to the number of sign changes in the sequence {Uj }. If at least one sign change
occurs in the sequence {Uj }, then equation (8) has at least one root (µ) with positive real part
and hence the solution of equation (4) is unstable in the neighbourhood of the fixed point x�.

We now calculate the sequence {Uj } when N > 5. Substituting for aj in equation (9),
and on simplifying, we get

U0 = 1

N !
, U1 = 1

(N − 1)!
, U2 = 2

N !(N − 2)!
, (10)

which are positive for all positive N and

U3 = − 2(N − 5)

N !(N − 1)!(N − 3)!
(11)

which is negative for all N > 5. Since there is at least one sign change in the sequence {Uj }, it
follows that the fixed points of equation (4) are unstable for N > 5 irrespective of the details
of the mapping function f (x), so long as it is continuous and differentiable.

We now turn to the case N = 5. Explicit calculation shows that

U0 = 1

5!
, U1 = 1

4!
, U2 = 2

5!3!
, U3 = α(x�) − 1

5!4!
and

U4 = − (α(x�) − 5/3)2 + 20/9

5!2
. (12)
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From equation (12), it is clear that there is a sign change at U3 and no further sign change
at U4, if α(x�) < 1. On the other hand, if α(x�) > 1, U3 > 0 and U4 < 0. Thus, there is at
least one sign change in the sequence {Uj }, regardless of the details of the mapping function
f (x) for N = 4, as well. No such general conclusions can be drawn for the cases N = 1, 2,
3 and 4.

We now turn to the specific case of truncation of chaotic maps. Since a minimum of three
dimensions is required for occurrence of chaos in ordinary differential equations, truncations
to order N = 1 and 2 are uninteresting from this perspective. We also now know that
the truncations to order N � 5 are also uninteresting as they lead to unbounded solutions.
Therefore, in what follows, we concentrate on truncations with N = 3 and 4. It is found
(Rajan Nambiar 2003) that the solutions of these equations show many features which are not
shared by the solutions of the original discrete map. For concreteness, we present the results
for the logistic map f (x) = px(1 − x), x ∈ [0, 1].

4. Truncation at N = 3 and 4

For this case, equation (4) becomes

d3x

dt3
+ 3

d2x

dt2
+ 6

dx

dt
+ 6(x − f (x)) = 0. (13)

Linear stability analysis of the above equation, with f (x) = px(1 − x) shows that both fixed
points (0 and 1 − 1/p) are stable for p < 4. Thus, the truncation at N = 3 leads to regular
behaviour for all p ∈ [0, 4], the range of p for which the logistic map is map of the unit
interval to itself. This has to be contrasted with the occurrence of chaos in the logistic map
when p ∈ [3.66, . . . , 4]. However, the system of equations (13) do show chaotic behaviour
when p > 4.

Using the scaled variables X = (2p/9)x and τ = t/3, equation (13) can be rewritten as

d3X

dτ 3
+

d2X

dτ 2
+ ν

dX

dτ
+ −λX + X2 = 0 (14)

where ν = 2/3 and λ = 2(p − 1)/9. In fact, the generalization of equation (14) obtained
by allowing ν to take arbitrary values is equivalent to the equations studied by Coulett et al
(1979) and Arneodo et al (1985) which exhibited striking features in its solution. The model
shows regular, chaotic and or unstable behaviour for certain choices of the parameters ν and λ.
For example, for a fixed ν, as λ is increased, we observe sequences of either finite or infinite
number of period doubling bifurcations and reverse bifurcations with unstable regions in
between. The bifurcation diagram is substantially different for a neighbouring ν. Thus, the
significant aspect of this equation is that the nature of solution changes drastically for very
small changes in the values of the parameters. It is as if the parameter space is riddled. The
solution of ODE obtained by truncating at N = 4 also shows similar features.

5. Conclusions

The present work shows that the nature of solutions of the ordinary differential equations,
obtained by truncating the power series of the time evolution operator corresponding to
discrete maps, is very different from those of the discrete maps. In particular, the fixed points
of the ODEs with N � 5 are unstable regardless of the details of the map. In contrast, the
stability properties of the ODEs with N � 4 do depend on the details of the map. For the
specific case of the logistic map, truncations at N = 3 and 4 lead to solutions characteristic of
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systems with a riddled parameter space. Study of the nature of solutions of the equations with
N � 5 for arbitrary initial conditions would, indeed, be interesting.
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